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C R I T I C A L  C O N D I T I O N S  F O R  T H E  G R O U P  S P E E D  

OF P R O P A G A T I O N  OF I N T E R N A L  G R A V I T Y  W A V ES  

V. I. B u k r e e v  UDC 532.59 

Four experimentally obser~,ed unstable and resonant 'regimes of  generation of internal waves by 

a moving or oscillating cylinder are considered. Two of them can be treated as a manifestation 
of the critical-layer effect, but for the group rather than for the phase speed of propagation o/ 
small per~turbations, one regime can be regarded as a manifestation of the effect o/compaction 

of the energy o / two  waves, and one m o ~  regime admits both of  the indicated treatments. 

We consider two-dimensional steady flow wi th  specified distr ibutions of the velocity u and density 

p ahmg the z coordinate directed vertically upward.  Additional explanatioIm are given in Fig. 1. In the 
unper turbed state,  the stability condition dp/dz  <<. 0 is satisfied over the entire region occupied by the 

liquid. A two-laver quiescent hquid is considered as a particular case (a = 0 and p varies jmnpwise). A 

two-dimensional per turbat ion is introduced into this sys tem by a cylinder of diameter D moving under the 

lt~w 

x.  = :r0 -- Ut. z.  = h + a sin (9.t + ~0). 

whcrc x .  and z. are the coordinates of the cylinder ~xis in the fixed sys tem shown in Fig. 1 and x0, U, h, a, 
~,  and ~o are parameters .  The purely translat ional  ( ~  = 0) and purely  oscillatory (U = 0) laws of motion 

are co~tsidcred as p~rticular cascs. 
The  problem contains a number of characterist ic  speeds. For linear waves, besides explicitly prescribed 

vahtes of u and U, of significance arc the phase c and  group c o speeds of propagation of small harmonic 

perturbations.  I t  is important  that  for gravity waves in a liquid, c and C.q do not coincide as a rule. For 
nonlinear per turbat ions,  the notion of the group speed loses sense but  the limiting speed of propagation of 

.n,,~ plays an important  role. solitary waves ~ . 
One of the most informative indications of the critical s tate is the  equali ty of some characteristic speeds. 

The present work ~bcuscs on the conditions c v = u and  cg = U. For comparison,  we also give inforination on 
~lllc'lX the critical s ta tes  with satisfaction of the conditions c = a, Cg = c, and c s = u. 

Results of analysis of the system response to a snmll per turba t ion  with c = u have given an impetus 

for the development  of the linear theory of hydrodynamic  stability. In this theory, the main flow is subjected 

to a snmll per tu rba t ion  whose s t ream flmction has the  form 

~') = ~(z)  cXP [i(/,'x -- oat)], i = x/7-1, (1) 

where :r is the longitudinal coordinate, ? is time, k is the wavmmmber,  anti w is the angular frequency. For 

pcrturl)ation (1), the phase and group speeds arc defined by the relations c = oa/k and cg = d~,,/dk. 
Rayleigh [11, analyzing the case an iIlviscid liquid of homogeneous density (p = c o n s t )  in a linear 

al)proximation, ol)tained the following cquation for the  per turba t ion  ampli tude:  
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Fig. 1. The scheme of the problem. 

\ dz  2 - - ~ 5  ~ = O. 

For u = c, it has only the  trivial solution �9 = 0. T h e  ,,-alues of  z for which u = c are called the  critical layer 
(or critical level) [2], in the  given case, for the phase  speed.  Later .  the u n c e r t a i n t y  for u = e was eliminated 
by two methods:  taking into accouut nonl inear i ty  and  taking  into accoun t  the  real physical properties of 

liquids. 
Taking into account  the real ptwsical proper t ies  of  liquids, Orr  [3] and  Soinmerfeld [4] obtained the 

e,(luation 

� 9  _ k2~i/) d2u ill (d4q2 d2q2 ]~' |~) 0, 
- v + - + = 

where u is the k inemat ic  coeffMent of viscosity. For p = const ,  it solves the  problem of the critical layer in 

the 1)hase st)eed. 
For an inviscid, densi ty  stratifie(1 liquid, Taylor  [5] and  Goldstein [6] ob ta ined  the equat ion  

( u . - c ) - ~ " ) M l ' 2 q ~ - k 2 ~ ) - [ ( u , - c ) d 2 u - X " ] q ! = O . ~  N,2_ pg dPdz (2) 

(9 is the free-fall accelerat ion) ,  which has a quadra t ic  s ingular i ty  fbr u = c. 
Drazin  [7] took into account liquid viscosity and ob t a ined  the e q u a t i o n  

.2/d2t~[,~ _ k 2 ~  ) _ [(u_c)  d2u,~ ] ,it., .[dlq2 d2q2 +/,:ltI/)dz---~2 O. - N2jKO + "~-. ( u , - C ) ~ d ~ ,  t - 2k 2 = 

But this (lid not  resolve the uncer ta in ty  for u = c. On ly  addi t ional  a l lowance ibr molecular diffusion of the 
substance (heat  or impur i ty)  ttmt produces  density s t ra t i f i ca t ion  made  it poss ible  to solve the problem. 

Hazel [8] derived the equat ion 

L ( ~ )  = 0. 

Here 

( 3 )  

d2u N 2 _ _ :- -, L = (',,, - c)2(d 2 - ~:2) - [,, - c + a(d" - ~'')] ~ + + ,~t,(d"- ~-~)'~ (~, - c)6,, + b)(d 2 - ~")" 

where d = d/dz, a = i.k/k, and b = iu/k (X is the molecular-diffusion coefficient) .  All previous equations are 

par t icular  cases of (3). 
T h e  effect of molecular  diffusion oil the s tabi l i ty  of  shear  flow of a s t ra t i f i ed  liquid was studied experi- 

mental ly in [9], where a review of papers  containing numer ica l  calculat ions is given. 
T h e  equali ty of the  coefficients (u - (,q)'2 and u, - csj to  Zero co r re sponds  to the criticM layer for the 

group speed. These  coefficients appear  in the second app rox ima t ion  in a series expansion in the per turbat ion  

ampli tude.  Liu and Benney  [10] obtMned the equa t ion  

d2 - -  (tt - -  Cg) d2lt 

586 



where k~ is defined by Eq. (2), g21 is tile amplitude of the stream function of the drift flow generated by a 
weakly nonlinear wave, and f0 is a certain function of z, u, N, c, and c - c g ,  for which an explicit expression 
is obta ined in [10]. This expression is very cmnbersome and is not given herein. We only note tha t  for u = C q, 

~i/1 =ff22 C--Cg 
( u  --  c)  2" 

Physical  processes in the critical layers for the group speed have not been studied experimentally. The 
present investigation partly fills this gap. Below, we give some results from three series of experiments in a 
tank with a flat horizontal bo t tom 4.8 m long and 0.2 m wide (Fig. 1). 

In the series of experinmnts I ([t = 0) and II (U = 0), the lower layer (a weak solution of glycerin in 
water) was at  rest, and the upper  layer (distilled water) moved at velocity u. Because of molecular viscosity 
and molecular  diffusion, interlayers with small (about 1 cm) characteristic thicknesses 51 and 52 for density 
and velocity, respectively, formed between water and the solution. Up to a certain vahm of the difference in 
velocity between the layers, these interlayers stabilized the flow (see, e.g., [2]), and in the examples considered, 
the unper tu rbed  state of the system was stable. The constant value of the velocity u and the relatively low 
level of turbulent  fluctuations (root-mean-square value smaller than 0.02u) was ensured by special devices 

located at  the entrance to the working section of the tank. The surface on which p = P0 = (Pl + p2)/2 was 
assumed as the conditional interface between the layers. 

In the series of experiments III, the case of a two-layer quiescent liquid in the unper turbed  state 
(51 = 52 = 0 and u = 0) was studied. Stratification was produced by means of water and kerosene, and the 
stability of  t |m unperturbed state  against uncontrolled perturbations was ensured by interface tension. 

The  densities of the liquids were as follows: (0.999 4- 0.001) g/cm 3 for water, (0.8 4- 0.001) g/cm 3 
for kerosene, and (1.013 4- 0.002) g/cm :~ for the glycerin solution. The kinematic-viscosity coefficients were 
(0.0105 4- 0.0004) cm2/sec for water, (0.0108 • 0.0005) cm2/sec for the glycerin solution, and (0.0170 • 
0.0005) cm2/sec for kerosene. Tim molecular-diffusion coefficient for glycerin in water wa.s approxinmtely 
0.4- 10 -5 cm2/sec. The coefficient of interfacial tension betwc~n water and kerosene was (40 4- 4) �9 10 -:t N/re. 
The. free surface served a,s the ul)per bound, but the perturbat ion parameters are such that  in mathematical  
models it can be replaced by a rigid 1)oundary. This was established on the basis of the theoretical and 
experimental  da ta  of [11] and confirmed by special control experiments. 

The  cylinder w~s fastened on a towing carriage by means of two telescopic holders, whose par t  immersed 
in the liquid had a diametel" of 3 ram. The gaps between the ends of tim cylinder and the lateral walls of tim 
tank were abou t  1 ram. Vertical oscillatioim of the cylinder were performed by a special device, which was 
able to change the amplitude a and frequency Ft. of oscillations. The strictly sinusoidal nature  of oscillations 

w~s provided for by a special link device. 
Motion of tlm cylinder began from the state of rest, so that, generally, the set of specified parameters 

included the characteristic times of attainment of steady regimes of translational and oscillatory motions. 
For the examples considered below, these parameters had values of about 0.2 sec for total  times of motion 
30-120 sec, so that  their role was insignificant. From preliminary experiments, we obtained the initial position 
of the cylinder x0 relative to the right-hand end wall of the tank (Fig. 1) for which the effect of this parameter 
could be ignored. Observations of the processes were terminated ~ts soon as the internal waves reflected from 

the end walls of the tank arrived at the x coordinate considered. 
In the experiments with water and kerosene, tim deviations of the interface from the equilibrium 

position 71 were recaptured by the wavemeters described in [11]. In the experiments with a continuously 
stratified liquid, photogral)hy was a more infbrmative nmtho(1. In photogral)hy, the lower layer (or the line of 
equal densi ty  p = P0 = const) was colored by ink. The main characteristic scales of length and time were h2 
an(1 ~ ,  rest)ectively (~ = (Pl/P2) - 1). The fixed (x, z) and moving (x l, zl) coordinate systems used 

are shown in Fig. 1. 
P lanning  of the experiments was performed on tim basis of the semigraphical method,  whose essence 

is explained using the example of shear flow of an inviscid two-layer liquid with no interracial tension and 

with the free surface replaced by a rigid bound~try (Fig. 2). 

587 



( 0  0 , 

-5 

100 k ~ 

( , 9 0  

1 

0 o 

- I  ~ ~ . ~ _  k 

Fig. 2. Dispersion curve of the linear theory and perturbation characteristics for series of experiments I and II. 

On tile phase plane (k ~ = /oh2. ~.0 = w ~ ) ,  we plotted tile dispersion relation of tile linear 
theory w~176 which ill our case has tim form [11] 

~0 = k0 V/-] 4- k~ + 1) A f  . (5) 

�9 , )  o r - 

where f = F / ( 1  + A ) ' , .  F = u - / ( ~ g h . , ) ,  A = [(1 + e ) t a n h k ~ 1 7 6 1 7 6  and g ~ = h , / h 2 ;  the  coordiimte 
system is a t t ached  to the lower layer. For a quiescent unper turbed liqukt, irl (5) it is necessary to set F = 0. 
Formula (5) contains three independent parameters s, F ,  and H ~ For _~ << 1, the role of tile parameter  

is minor and only the product  ~9 is of significance. The  plot in Fig. 2 is constructed for h,2 = 18.5 cm, 
= 0.013, F = 0.031 (u = 27 cm/sec), and H ~ = 1.24. The region of sxnall values of k ~ is scaled up as a 

separate fragment .  
Eigilt symmetrically arranged singular points for the phase and group speeds of pe r tu rba t ion  propa- 

gation are distinguished iil Fig. 2. At the point (0, 0), tile phase speed assumes an extreme value, and olle of 
the most crit ical co_,~ditions holds: 

o c o .o v / f 4 - 1 - - 1  _ A f  for t: ~  
c g ~ --~ ( m. --  A -4- 1 

,0 the linear theory is inapplicable. As a first approximation of simllow-water theory, there exist For c o > (m, ., 

only discontinuous solutions, which in pra('tice correspond to breaking waves. However, the experiments  of 
[12, 13] show tha t  shallow-water wave breaking occurs only when the speed of propagation of their  leading 

,m ,~• smooth waves of tile tvpe of undular, cnoidal, etc.. m ~ . x  aIl(1 in the range c m < cl < ( s , edge Cl > c s > c,,~ . . . .  

waves arise. T h e  second approximation of shallow-water theory reflects this fact fairly well [11-13]. From a 
physical viewpoint,  breaking of nonlinear waves on shallow water begins at u = c~. 

Crit ical conditions also hold at point 4, where the group speed turns to infinity. This  point  corre- 
sponds to the lower boundary of wavenumbers for perturbations that are unstable by the Kelvin- Hehnholtz 

mechanism [14]. 
At point  2. the phase speed is equal to the rate of motion of the upper layer, and at point  6. it is 

equal to tile ra te  of motion of the lower layer, i.e.. the conditions determining a critical layer in the phase 
speed hold. At points 1, 3, 5, and 7, the conditions determining tile critical lz\ver for tile group spee(1 are. 
satisfied. Ill addition, points 3 an(l 7 hound the existence domain of linear harlnonic waves for the parameter  

.0 and c ~ haw~ opposite signs. On the w ~ Between points 3 and 4 an(t l)etween I)oints 6 and 7, tile st)ee(ls % 
arc 4-5-6,  (,q'~ > c o and. according to [14, 15], "negative energy", waves exist there. 

On the plane (k ~ w~ along with w~176 we plotted the characteristic of the introduced per turbat ion 
~',~,~ ]. For joint  translational and oscillatory motion of tile cylin(ter, which took place in tile series of 
experiments III, tile perturbat ion characteristic is represented by thr@ parallel straight lines: 

o = k ~  o, 0 = k 0 U  o 0 = k ~  o 9? (6) ~*1 ~.2 ' + ~-~0, ~*~ _ , 
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Fig. a. Examples of physi(:al processes in shear flow: (a), (b), (c), and (d) 
correspond to the perturbation characteristics m, rz, p, ~md q in Fig. 2. 

where U ~ = U~ ~ and t]0 = Q ~'2/(x.q). From tile points of intersection ~,,0()~.0) and w~176 it is i>ossible 

to determine the length, frequency, and phase and group speeds of propagation of the s ta t ionary linear 
harmonic waves generated by the specified perturt)ation. With variation in the paranmters of tile system 
and per turbat ion,  the straight lines (6) can have up to five points of intersection with curve (5). Of" special 
interest are combinations of parameters for which the straight lines (6) intersect or are tangent to curve (5) 
at some of the singular points indicated above. Below, we discuss precisely these examples. 

In the particular case of purely translational motion (series of experiments I), 9+ = 0 and three straight 
lines (6) merge into one: ca. t = ca.,+, = ua.a --' k~ ~ For purely oscillatory motion (series of experiments It), 
U = 0 and the perturbat ion chanmteristi(" is tel>resented 1)y two straight lines: ua.2,a = •  

Relat ion (5) corresponds to an idealized system. Iu the region of large k ~ the viscosity, molecular 
diffusion, and interracial tension haw+ a significant effect on ~,'~176 In the present work, we calculated 
dispersion relations taking into account these factors. A comparison showed that  for small j~.0 (from j~:0 = 0 
to j~.0 ,,~ 12), formula (5) gave good accuracy, and the parameters F, h/h2, D/h,,2, a/h2, and 5t,2/h2 in the 
experiments were specified precisely for these v~dues of k ~ 

The  straight lines m, n, and p in Fig. 2 are tim perturbation characteristics from the series of experi- 
ments I. For the characteristic m, the speed of the cylinder U ~ = -0.305. The point of its intersection with 
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co~ ~ is not a singular 1)oint, and the cylinder generates a smooth,  almost sinusoidal wave. It  is shown in tile 

photo in Fig. 3a. The  length, frequency, and phase and group speeds of this wave are adequately described 

by linear theory, and the ampli tude is about 3()% larger than tile amI)litu(le obta ined in calculations wi th  tile 
cylinder s inmlated by a dipole. The  causes of this diffe, rence are discussed ill [11]. The  cylinder moves fi'om 

right to left in the upper layer at a distance from the conditional interface of h,/D = 3, where D = 2 cm. The 
upper  layer moves to the right: and the lower l~\ver, colored by ink. is at rest. 

The  characterist ic n corresponds to a speed of the cylinder of U ~ = -0 .126,  D = 3 cm, and  h / D  = 3: 

the renmining parameters  are same a,s in Fig. 3a. The  absolute value of the speed of the cylinder is lower 

than  tha t  in the  previous example, and, at first glance, the waves should be even more stable. However,  in 

this ease, the point  of intersection of the characteristics of the system and the per turba t ion  are among  the 
singular points  ibr tim group speed, and the waves turn out to be unstable (Fig. 3b). 

The  characterist ic p corresponds to a speed of the cylinder of U ~ = 0.305: the point of intersection 

is also singular,  and the per turbat ion is also unstable (Fig. 3c). A cylinder of 3-cm dianmter moves in the 

lower laver in the santo direction as the upper layer but  slightly ahead of it. I t  should be  noted t ha t  in the 

above examples ,  the entire upper  layer or the entire lower layer was in the critical s ta te  for the g roup  speed 

of pe r tu rba t ion  propagation.  
The  characterist ic q refers to exl)eriments of series II  with purely oscillatory motion of the  cylinder. 

I ts  lower b ranch  is tangent to the dispersion curve at the singular point 7. The  system rest)onse to this 

l )er turbat ion is shown in Fig. 3d (D = 7.5 cm, oscillation ampli tude a/D = 0.5, and h / D  = -1 .25) .  Although 

the dianmter  of  the cylinder is much greater than that  in series I, the cylinder generates weak shapeless waves, 

which cannot  propagate  far uI)stream an(l break. 
We note  tha t  by the terminology of {14], in series I I  the reginm of compCmtion of the energy of two 

waves occurs when tile two points of intersection of ~a(k) and ~,.(k) nmrge. TILe fact that  no s t rengthening 
of waves occurred  in this case can be explained by part icular  relations between the l)hases of tim individual 

harmonic comi)onents of this perturbation.  A well-known similar situation arises for the part icular  range of 

speeds of gravi ty  and caI)illary waves at which they suI)press ea('h other [16]. 
In  the absence of a velocity shear between the layers, two critical conditions for the group speed are 

possible. One of them is the same as in the presence of a velocity shear between the layers: cg = c ms k --* 0. 

The  other  condit ion c.q = U holds, for example, in translational-oscillatory motion of a cylinder. Wi th in  the 
f ramework of the  model of an invisci(t boundless two-layer liquid ignoring interracial tension, this condition 

holds if the pa ramete r s  of tile law of motion (6) satisfy the relation [17] 

(1 + _r 1 
eo  - 4 (7) 

Varying values of U, fL and e so ~ks to satisD condition (7), it is possible to obta in  a set of critical regimes 

for the group speed. A nmnber of such regimes occurred in the series of exi)eriments III .  It  should be noted  that  

viscosity and interracial tension change condition (7), which was taken into account in planning exper iments  

by the semigraphieal  method described above. The error did not exceed several pe.rcent. However, for the 
resonant regime, it was significant. The most pronounced physical effects were observed for combinat ions 

of pa ramete r s  tha t  we, re specified i)reviously in the experimental  1)art of [17]: tq = 30 era, /12 = 15 era, 
D = 1 era, h = 3 cm. a = 0.5 era. and e = 0.25. The parameters  U and 9. were varied. 

Figure 4 shows exl)erimental curxx~s of tile (leviation of tile interface from the equilibrium posi t ion rl(t ) 
ol)tained by a fixed wavemeter at x - x 0  = - 1 5 0  cm [17]. The  t ime t is rea(1 from the moment  of s t a r t  of the 

cylinder. TILe *1 axis intersects the t axis at tile 1)oint corresl)onding to tim moment  when the cylinder axis 
passes above the wavemeter. The perturbations ahead of the cylin(ter are located to the left of the r! axis. 

Tim curve in Fig. 4a is ol)tained for U = -8 .44  cm/sec  and l),/(2r) = 0.51 Hz, and with a correction 
for the effect of  viscosity and interracial tension, the resonance condition is satisfied exactly. In this case, ill 

the neighborhood of the cylinder, a s tat ionary wave I)acket forms, whose envelope is reminiscent of  a solitary 

wave. Direct ly under the cylinder, the oscillation period changes significantly. 
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Fig. ,4. Resonant (a) and nearly resonant (b) regimes in translational-oscillatory motion of a cylinder in a 
quiescent two-layer liquid. 

This regime can also be t rea ted  ,as the effect of compaction of the energy of two waves. In this regime, in 
contrast to the regime shown in Fig. 3(t, there was a manifold increase in tile perturbation amplitude compared 
to the cases of purely translational or purely oscillatory motion of a cylinder with the same parameters.  

The curve in Fig. 4b is obtained for U = - 4 . 2 8  cm/sec and f~/(2rr) = 1.03 Hz. With allowance for 
the effect of viscosity and interfacial tension, the parameters  U and ~2 are only 3% smaller than the critical 
values. The wave pattern,  however, changes significantly. It is nonstationary, and nmltit)le strengthening of 
perturbations occurs only atmad of the cylinder. It  should be noted that  in the resonant regime and in a 
certain neighborhood of ~t, the t)arameter ~20 in the law of motion of the cylinder I)lttys a very important  role. 
When ~0 in the resonant regime was varied, directly under the cylinder there w~Ls a ridge or a cavity or the 
vahm of q was intermediate between them. In the nearly resonant reginms, this parameter determines where 
strengthening of the waves occurs: ahead of or behind the cylinder. 

The data  given in Fig. 4 made  it possible to determine which of the two methods is more effective 
in a theoretical analysis of the critical regimes of wave generation: allowance for physical factors in the 
model or allowance for nonlinearity. A comparison with the linear theory shows [17] that,  ignoring viscosity, 
this theory is adequate for describing tile phase pa t t e rn  of waves but  predicts unlinfited increase in their 
amplitude. Allowance for viscosity in tile linear nmdel led to satisfactory agTeement with the exl)eriment for 
wave amt)litudes as well. 

Thus, the al)ove examI)les show that tile critical conditions h)r the group sI)eed of perturbat ion propa- 
gation I)lay an imI)ortant role in the prol)lem of the stabili ty of gravity waves. The quantity cg characterizes 
the nman rate of transfer of the energy of a harmonic perturbation. Theretore. the flow rearrangement is 
faster and stronger under the critical conditions for Cg than under the critical conditions for c. At the same 
time. Dotu the theoretical and experimental  information obtained it follows that in the critical layers R)r c v, 
the loss of stability is likely to proceed by a rigid type,  i.e., tile perturbation intensity should exceed a certain 
threshold vahm. This is confirmed by two facts: 1) the uncertainty for c v = u occurs only in the nonlinear 
at)proxiInation for the per turbat ion  amt)litude (4); 2) ['or tile flows shown in Fig. 3b and c, tile Richardson 

a -  ~ ' )  nlnnl)er Ri = ~.qb/u- was nnlch larger than tile critical vahle Ri = 0.25, and. according to the linear theory. 
the perturbation should be stable [2]. There is no doubt  that  for infinitesimal 1)erturbations. this theoretical 
result is valid. In addition, it is confirmed cxt)erinmntally for rather smaU real perturbations (see Fig. 3a) 
1)ut not under tile critical conditions for tile group speed. 
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